# ---- SET UP ----
V2LSCF.summary.data = function (current_year, redo = F) {
dir = file.path("S:", "TemperatureData")
fig.fn = file.path(data_root, "bio.snowcrab", "reports", current_year, "JanuaryMeetings", "acoustic")
if(!dir.exists(fig.fn))(dir.create(fig.fn, recursive = TRUE))
getwd()
setwd("S:/Research Projects/MPA/SABsummary/summary data/qualified detections")
library(dplyr)
library(ggplot2)
library(ggforce)
library(tidyr)
library(data.table)
library(scales)
library(tidyverse)
library(ggrepel)
library(formattable)
library(viridis)
library(hrbrthemes)
library(zoo)
library(xtable)
library(stargazer)
library(pander)
library(tables)
# if(redo){
# ---- Import Data ----
# Import complete file if not updating data
d2015<-read.csv("v2lscf_qualified_detections_2015redo.csv")
d2016<-read.csv("v2lscf_qualified_detections_2016.csv")
d2017<-read.csv("v2lscf_qualified_detections_2017.csv")
d2018<-read.csv("v2lscf_qualified_detections_2018.csv")
d2019<-read.csv("v2lscf_qualified_detections_2019.csv")
d2020<-read.csv("v2lscf_qualified_detections_2020.csv")
d2021<-read.csv("v2lscf_qualified_detections_2021.csv")
d2022<-read.csv("v2lscf_qualified_detections_2022.csv")
past<-read.csv("pastworktocompare2.csv")
# past1<- past %>%
# select(catalognumber, fieldnumber, Project, Common.Name)
#names(past1)[3]<-"Common.Name2"
#1.1 ---- Evaluate catch file ----
# names(d2015)
# names(d2016)
# names(d2017)
# names(d2018)
# names(d2019)
# names(d2020)
# names(d2020)[1]<-"basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2015))))names(d2015)[which(names(d2015) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2016))))names(d2016)[which(names(d2016) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2017))))names(d2017)[which(names(d2017) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2018))))names(d2018)[which(names(d2018) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2019))))names(d2019)[which(names(d2019) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2020))))names(d2020)[which(names(d2020) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2021))))names(d2021)[which(names(d2021) == "ï..basisofrecord")] = "basisofrecord"
if(any(grepl("ï..basisofrecord", names(d2022))))names(d2022)[which(names(d2022) == "ï..basisofrecord")] = "basisofrecord"
test<-rbind(setDT(d2015), setDT(d2016), setDT(d2017), setDT(d2018), setDT(d2019), setDT(d2020), setDT(d2021), setDT(d2022), fill=TRUE)
# names(test)
#levels(test$collectornumber)
#glimpse(test) # evaluate structure
#----trying to keep past tag identification work by merging files----
complete = test
complete = distinct(complete) #check for duplicates
# str(complete)
# summary(complete)
# glimpse(complete)
# head(complete)
# tail(complete)
# write.csv(complete,'S:/Research Projects/MPA/SABsummary/summary data/V2LSCF_complete_up_to_Mar2023.csv')
# }
options(dplyr.summarise.inform = FALSE)
#----start here to load data that is complete and formatted----
#complete<-read.csv('S:/Research Projects/MPA/SABsummary/summary data/V2LSCF_complete_up_to_Mar2023.csv')
#---- prepare tables ----
#summarize to get count of species
if(any(grepl("trackercode", names(complete))))names(complete)[which(names(complete) == "trackercode")] = "Project"
complete$scientificname[which(complete$scientificname == "Gadus morhua")] = "Atlantic Cod"
complete$scientificname[which(complete$scientificname == "Anarhichas lupus")] = "Atlantic Striped Wolffish"
complete$scientificname[which(complete$scientificname == "Prionace glauca")] = "Blue Shark"
complete$scientificname[which(complete$scientificname == "Lamna nasus")] = "Porbeagle Shark"
complete$scientificname[which(complete$scientificname == "Salmo salar")] = "Atlantic Salmon"
complete$scientificname[which(complete$scientificname == "Microgadus tomcod")] = "Atlantic Tomcod"
complete$scientificname[which(complete$scientificname == "Amblyraja radiata")] = "Thorny Skate"
if(any(grepl("scientificname", names(complete))))names(complete)[which(names(complete) == "scientificname")] = "Common.Name"
source("S:\\Research Projects\\MPA\\SABsummary\\summary data\\qualified detections\\add.species.r")
complete = add.species(complete)
# write.csv(complete,'S:/Research Projects/MPA/SABsummary/summary data/V2LSCF_complete_cleanup.csv')
# complete<-read.csv('S:/Research Projects/MPA/SABsummary/summary data/V2LSCF_complete_cleanup.csv')
table1 <- complete %>% dplyr::group_by(Project) %>%
dplyr::summarise(INDIVIDUALS= n_distinct(fieldnumber))
table1$Project <- as.character(table1$Project)
#table1$Project[table1$Project == "Unknown"] <- "UNKNOWN (BDK, PBN, PBU)"
table1 = formattable(table1, align = c("l", rep("r", NCOL(table1) - 1)))
table1
table2<-complete %>%
dplyr::group_by(Project, Common.Name) %>%
dplyr::summarise(Individuals =n_distinct(fieldnumber))
table2a <- as_tibble(table2)
table2a$Project <- as.character(table2a$Project)
table2a$Individuals <- as.character(table2a$Individuals)
table2b<-table2a
# %>%
# add_row(Project = "BDK -Bras d'Or Atlantic Salmon", Common.Name = "Atlantic Salmon", Individuals = "*") %>%
# add_row(Project = "PBN - NOAA Penobscot Salmon Tracking", Common.Name = "Atlantic Salmon", Individuals = "*") %>%
# add_row(Project = "PBU -USGS Salmon", Common.Name = "Atlantic Salmon", Individuals = "*")
#detailed table of project and individuals
table2b$Project <- as.character(table2b$Project)
table2b$Project[table2b$Project == "ASF"] <- "ASF - Atlantic Salmon Federation"
table2b$Project[table2b$Project == "BDK"] <- "BDK -Bras d'Or Atlantic Salmon"
table2b$Project[table2b$Project == "BQEEL"] <- "BQEEL - Bay of Quinte Eel Tracking"
table2b$Project[table2b$Project == "BFTTAG"] <- "BFTTAG-Estimating Bluefin tuna post release mortality**"
table2b$Project[table2b$Project == "JPBS"] <- "JPBS - DFO Porbeagle and Blue Shark"
table2b$Project[table2b$Project == "KNE"] <- "KNE -NOAA Kennebec Salmon Tracking"
table2b$Project[table2b$Project == "MARSS"] <- "MARSS -Maritimes Region Atlantic Salmon"
table2b$Project[table2b$Project == "MFSAR"] <- "MFSAR-Shark Spatial Ecology and Life History in NL Waters**"
table2b$Project[table2b$Project == "MMFSRP"] <- "MMFSRP - MA Maine Fisheries Shark Research Program"
table2b$Project[table2b$Project == "NARR"] <- "NARR -Survival of Stocked Smolts Maine USA"
table2b$Project[table2b$Project == "NSBS"] <- "NSBS -OTN Blue Shark"
table2b$Project[table2b$Project == "PBN"] <- "PBN - NOAA Penobscot Salmon Tracking"
table2b$Project[table2b$Project == "PBU"] <- "PBU -USGS Salmon"
table2b$Project[table2b$Project == "QMS"] <- "QMS-Quebec MDDEFP Atlantic Sturgeon Tagging**"
table2b$Project[table2b$Project == "SABMPA"] <- "SABMPA -St. Anns Bank Species Tracking Study"
table2b$Project[table2b$Project == "SGS"] <- "SGS -OTN Canada Sable Island Grey Seal Bioprobes"
table2b$Project[table2b$Project == "SPI"] <- "SPI - Shippagan Cod Tagging"
table2b$Project[table2b$Project == "TAG"] <- "TAG -Tag a Giant"
table2b$Project[table2b$Project == "ZSC"] <- "ZSC- Scotian Shelf Snow Crab Tagging**"
table2b$Project[table2b$Project == "ESRF"] <- "ESRF - Atlantic Salmon Offshore Tracking Project"
table2b$Project[table2b$Project == "ACT.PROJ179"] <- "ACT.PROJ179 - Massachusetts White Shark Research Program"
table2b$Project[table2b$Project == "ACT.PROJ129"] <- "ACT.PROJ129 - New York Juvenile White Shark Study"
table2b$Project[table2b$Project == "FACT.CCOCE"] <- "FACT.CCOCE - Movements and migration of sharks in the Western North Atlantic Ocean"
table2b$Project[table2b$Project == "BDLSPG"] <- "Apoqnmatulti’k - Use of Mi'kmaw, Local, and Western knowledge to study aquatic species in Bras d'Or Lake"
table2b$Project[table2b$Project == "MIGRAMAR.LBTPCR"] <- "Leatherback Turtle Tracking in Pacuare Wildlife Reserve, CR"
table2b$Project[table2b$Project == "V2LNSSA"] <- "Nova Scotia Salmon Association, Sheet Harbour"
table2b$Project[table2b$Project == "V2LWSAMP"] <- "White Shark Acoustic Monitoring Program"
names(table2b)[1]<-"PROJECT"
names(table2b)[2]<-"SPECIES"
names(table2b)[3]<-"INDIVIDUALS"
formattable(table2b, align = c("l", rep("r", NCOL(table2b) - 1)))
table3<-complete %>% # species detected
dplyr::group_by(Common.Name) %>%
dplyr::summarise(n_distinct(fieldnumber))
names(table3)[1]<-"SPECIES"
names(table3)[2]<-"INDIVIDUALS"
formattable(table3, align = c("l", rep("r", NCOL(table3) - 1)))
table4<-complete %>% #species by project and the number of detections
dplyr::group_by(Common.Name, Project) %>%
dplyr::summarise(N = n())
names(table4)[1]<-"SPECIES"
names(table4)[2]<-"PROJECT"
names(table4)[3]<-"DETECTIONS"
formattable(table4, align = c("l", rep("r", NCOL(table4) - 1)))
table5<-complete %>% # individuals by project by year
dplyr::group_by(Project, yearcollected) %>%
dplyr::summarise(N = n_distinct(fieldnumber)) %>%
spread(yearcollected, N)
names(table5)[1]<-"PROJECT"
formattable(table5, align = c("l", rep("r", NCOL(table5) - 1)))
names(table5) = names(table5)
table5a <- as_tibble(table5)
#table5a$Project <- as.character(table5a$Project)
table5a$PROJECT[table5a$PROJECT == "Unknown"] <- "UNKNOWN (BDK, PBN, PBU)"
formattable(table5a, align = c("l", rep("r", NCOL(table5a) - 1)))
names(table5a)[1]<-"PROJECT"
table6<-complete %>% # returning individuals by project by year
dplyr::group_by(fieldnumber, Common.Name, Project, yearcollected) %>%
dplyr::summarise(N = n()) %>%
mutate(freq = n_distinct(yearcollected)) %>%
filter(freq > 1) %>%
select(Common.Name, Project, yearcollected, N) %>%
spread(yearcollected, N)
formattable(table6)
names(table6)[3]<-"PROJECT"
names(table6)[2]<-"SPECIES"
names(table6)[1]<-"TAG ID"
#---- charts/plots-----
piedata <- complete %>%
dplyr::group_by(Common.Name) %>%
dplyr::summarise(count = n_distinct(fieldnumber)) %>%
arrange(desc(count))
piedata$Label <-paste(round(((piedata$count/sum(piedata$count))*100),2),"%")
####
piedata <- piedata %>%
mutate(end = 2 * pi * cumsum(count)/sum(count),
start = lag(end, default = 0),
middle = 0.5 * (start + end),
hjust = ifelse(middle > pi, 1, 0),
vjust = ifelse(middle < pi/2 | middle > 3 * pi/2, 0, 1))
fn = file.path(fig.fn, "pie.data.pdf")
plot1<-ggplot(piedata) +
geom_arc_bar(aes(x0 = 0, y0 = 0, r0 = 0, r = 1,
start = start, end = end, fill = Common.Name)) +
geom_text(aes(x = 1.05 * sin(middle), y = 1.05 * cos(middle), label = Label,
hjust = hjust, vjust = vjust)) +
coord_fixed() +
scale_x_continuous(limits = c(-1.5, 1.4), # Adjust so labels are not cut off
name = "", breaks = NULL, labels = NULL) +
scale_y_continuous(limits = c(-1, 1), # Adjust so labels are not cut off
name = "", breaks = NULL, labels = NULL)+
theme(legend.title = element_blank())
plot1
ggsave(filename = fn, device = "pdf", width = 7, height = 5)
fn = file.path(fig.fn, "bar.data.pdf")
####second way to show data
plot2 <- ggplot(data = piedata, aes(x = Common.Name, y = count)) +
geom_col(aes(fill = Common.Name) , show.legend = FALSE) +
ggtitle(paste("Species Frequency")) +
coord_flip() +
geom_label(aes(label = paste(count, percent(count/sum(count)), sep = "\n"),
y = -15, fill = Common.Name),
show.legend = FALSE,
size = 3.25, label.padding = unit(0.1, "lines")) +
expand_limits(y = -15) +
scale_fill_brewer(palette = "Set3", direction = -1)
plot2
ggsave(filename = fn, device = "pdf", width = 7, height = 5)
#histogram of species by month
x1 <- complete %>%
dplyr::group_by(Common.Name, yearcollected, monthcollected) %>%
dplyr::summarise(count = n_distinct(fieldnumber))
x1$monthcollected[x1$monthcollected == "1"] <- "01"
x1$monthcollected[x1$monthcollected == "2"] <- "02"
x1$monthcollected[x1$monthcollected == "3"] <- "03"
x1$monthcollected[x1$monthcollected == "4"] <- "04"
x1$monthcollected[x1$monthcollected == "5"] <- "05"
x1$monthcollected[x1$monthcollected == "6"] <- "06"
x1$monthcollected[x1$monthcollected == "7"] <- "07"
x1$monthcollected[x1$monthcollected == "8"] <- "08"
x1$monthcollected[x1$monthcollected == "9"] <- "09"
x1$yearcollected <- as.character(as.numeric(x1$yearcollected))
x1$Date <- as.yearmon(paste(x1$yearcollected, x1$monthcollected), "%Y %m")
x1test <- x1 %>%
dplyr::group_by(Common.Name, yearcollected, monthcollected) %>%
dplyr::summarise(count) %>%
mutate(Date = format(lubridate::ymd(paste(yearcollected,monthcollected,"01"))))
x1test$Date<-as.Date(as.character(x1test$Date))
fn = file.path(fig.fn, "month.data.pdf")
library(RColorBrewer)
nb.cols <- length(unique(x1test$Common.Name))
mycolors <- colorRampPalette(brewer.pal(5, "Set3"))(nb.cols)
speciesplot<-ggplot(x1test, aes(fill=Common.Name, y=count, x= Date)) +
geom_bar(position="stack", stat="identity") +
scale_fill_manual(values = mycolors) +
ggtitle("Individual species occurrances by month for the duration of\n the deployment of the V2LSCF receiver line.") +
labs(x="Year", y="Individuals Detected")+
theme_bw()
speciesplot
ggsave(speciesplot, filename = fn, device = "pdf", width = 7, height = 5)
fn = file.path(fig.fn, "month.data2.pdf")
speciesplot+scale_x_date(name=NULL, date_breaks="3 month", minor_breaks=NULL, date_labels="%b-%Y")+
theme(legend.title = element_blank(), legend.text = element_text(size = 14))
speciesplot
ggsave(filename = fn, device = "pdf", width = 7, height = 5)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.